2614 independent reflections 2265 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.042$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(3,5-Dimethylpyrazol-1-ylmethyl)pyridin-2-ylamine

Nour-Eddine Benchat,^a Sghir El Kadiri,^a Xavier Fontrodona,^b Eduard Bardaji^c and Brahim El Bali^d*

^aLaboratoire de Chimie de l'Environnement et des Matèriaux. Département de Chimie, Faculté des Sciences, Université Mohamed Premier, BP 717, 60000 Ouida. Morocco, ^bServeis Tecnics de Recerca, Universitat de Girona, Campus Montilivi, Edifici P2, 17071 Girona, Spain, ^cDepartment of Chemistry, University of Girona, 17071 Girona, Spain, and $^{\mathbf{d}}\!\mathsf{Laboratory}$ of Mineral Solid and Analytical Chemistry LCSMA, Department of Chemistry, Faculty of Sciences, University Mohamed I, PO Box 717, 60000 Oujda, Morocco

Correspondence e-mail: belbali@fso.ump.ma

Received 6 August 2007; accepted 11 August 2007

Key indicators: single-crystal X-ray study; T = 300 K; mean σ (C–C) = 0.002 Å; R factor = 0.045; wR factor = 0.136; data-to-parameter ratio = 18.4.

In the title compound, $C_{11}H_{14}N_4$, the dihedral angle between the ring planes is 74.76 (8)°. In the crystal structure, $N-H \cdots N$ hydrogen bonds result in centrosymmetric dimers.

Related literature

For related literature, see: Baldy et al. (1985); Sorrell et al. (1987); Touzani et al. (2003).

Experimental

Crystal data

$C_{11}H_{14}N_4$	$\gamma = 61.056 \ (2)^{\circ}$
$M_r = 202.26$	V = 536.77 (15) Å ³
Triclinic, P1	Z = 2
a = 8.4299 (13) Å	Mo $K\alpha$ radiation
b = 8.5720 (14) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 9.1803 (15) Å	T = 300 (2) K
$\alpha = 70.283 \ (3)^{\circ}$	$0.50 \times 0.30 \times 0.30$ mm
$\beta = 89.506 \ (3)^{\circ}$	

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: none
8403 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of
$wR(F^2) = 0.136$	independent and constrained
S = 1.06	refinement
2614 reflections	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
142 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1 F

Iydrogen-bond	geometry	(A,	°).	
---------------	----------	-----	-----	--

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $N3-H3A\cdots N2^{i}$ 0.886(17)2.177 (17) 3.0524 (17) 169.8 (15)

Symmetry code: (i) -x, -y + 1, -z + 1.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2504).

References

Baldy, A., Elguero, J., Faure, R., Pierrot, M. & Vincent, E.-J. (1985). J. Am. Chem. Soc. 107, 5290-5291.

Brandenburg, K. & Putz, H. (2005). DIAMOND. Release 3.1b. Crystal Impact GbR. Bonn. Germany.

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sorrell, T. N., Shen, C. C. & O'Connor, C. J. (1987). Inorg. Chem. 26, 1755-1758.

Touzani, R., Garbacia, S., Lavastre, O., Yadav, V. K. & Carboni, B. (2003). J. Comb. Chem. 5, 375-378.

supplementary materials

Acta Cryst. (2007). E63, o4519 [doi:10.1107/81600536807039906]

N-(3,5-Dimethylpyrazol-1-ylmethyl)pyridin-2-ylamine

N.-E. Benchat, S. El Kadiri, X. Fontrodona, E. Bardaji and B. El Bali

Comment

Polypyrazolyl-containing ligands are used in models for copper proteins to mimic active sites (Sorrell *et al.*, 1987). As part of our studies in this area, we prepared the title compound, (I), which contains amine, pyrazolyl and pyridyl functionalities.

The molecule of (I) is not planar (Fig. 1), the dihedral angle between the aromatic ring planes being 74.76 (8)°. Slight differences between (I) and the known 3,5-dimethylpyrazole, (II), (Baldy *et al.*, 1985) are reflected in the C3—N1 bond length, the angle C3—N1—N2 and the torsion angle C2—C1—N2—N1. These have the values 1.3557 (14) Å, 112.17 (8)° and -0.35 (2)° in (I) and 1.3442 (16) Å, 108.64 (9)° and 0.45 (16)° in (II), respectively.

The packing in (I) is consolidated by N-H···N hydrogen bonds (Table 1) resulting in centrosymmetric dimers (Fig. 2).

Experimental

Compound (I) was made by the method of Touzani *et al.* (2003) from a mixture of 0.941 g (10 mmol) of 2-aminopyridine and 2.522 g (20 mmol) of (3,5-Dimethyl-pyrazol-1-yl)-methanol.

Refinement

The N-bound H atom was located in a difference map and freely refined. The C-bound H atoms were geometrically placed and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. View of the molecular structure of (I) showing 50% displacement ellispoids and arbitrary spheres for the H atoms.

Fig. 2. A centrosymmetric dimer of (I) linked by N—H…N hydrogen bonds (double dashed lines). All H atoms except H3a omitted for clarity. Symmetry code as in Table 1.

N-(3,5-Dimethylpyrazol-1-ylmethyl)pyridin-2-ylamine

Crystal data

$V = 536.77 (15) \text{ Å}^3$
Z = 2
$F_{000} = 216$
$D_{\rm x} = 1.251 \ {\rm Mg \ m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
$\mu = 0.08 \text{ mm}^{-1}$
T = 300 (2) K
Prism, colourless
$0.50\times0.30\times0.30~mm$

Data collection

Bruker SMART CCD area-detector diffractometer	2265 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.042$
Monochromator: graphite	$\theta_{\text{max}} = 28.3^{\circ}$
T = 300(2) K	$\theta_{\min} = 2.4^{\circ}$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: none	$k = -11 \rightarrow 11$
8403 measured reflections	$l = -12 \rightarrow 12$
2614 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difmap and geom
$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.136$	$w = 1/[\sigma^2(F_o^2) + (0.0764P)^2 + 0.0625P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
2614 reflections	$\Delta \rho_{max} = 0.18 \text{ e } \text{\AA}^{-3}$
142 parameters	$\Delta \rho_{\rm min} = -0.21 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction correction: none methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.10021 (13)	0.48900 (13)	0.77976 (10)	0.0416 (2)
C1	0.18977 (15)	0.18891 (16)	0.87738 (13)	0.0438 (3)
N2	0.08931 (13)	0.34849 (14)	0.75052 (11)	0.0445 (2)
C2	0.26401 (16)	0.22673 (17)	0.98808 (13)	0.0461 (3)
H2A	0.3382	0.1389	1.0861	0.055*
N3	0.06940 (16)	0.70247 (16)	0.51613 (12)	0.0521 (3)
H3A	0.030 (2)	0.672 (2)	0.4467 (19)	0.060 (4)*
C3	0.20498 (15)	0.42005 (17)	0.92246 (12)	0.0419 (3)
N4	0.28260 (16)	0.76674 (16)	0.59911 (12)	0.0522 (3)
C4	0.2099 (2)	0.00185 (19)	0.88881 (17)	0.0576 (3)
H4A	0.1581	0.0163	0.7891	0.086*
H4B	0.1462	-0.0351	0.9682	0.086*
H4C	0.3383	-0.0958	0.9164	0.086*
C5	0.24125 (19)	0.5422 (2)	0.98353 (16)	0.0543 (3)
H5A	0.2914	0.6065	0.9084	0.082*
H5B	0.3279	0.4626	1.0814	0.082*
H5C	0.1279	0.6363	1.0002	0.082*
C6	0.00114 (16)	0.68493 (17)	0.65997 (14)	0.0486 (3)
H6A	-0.1283	0.7257	0.6382	0.058*
H6B	0.0100	0.7711	0.7016	0.058*
C7	0.21626 (16)	0.72951 (15)	0.49199 (12)	0.0440 (3)
C8	0.29132 (19)	0.71889 (18)	0.35594 (14)	0.0526 (3)
H8A	0.2427	0.6925	0.2829	0.063*
C9	0.4366 (2)	0.74785 (19)	0.33276 (16)	0.0594 (3)
H9A	0.4893	0.7396	0.2442	0.071*
C10	0.5052 (2)	0.7897 (2)	0.44195 (18)	0.0627 (4)
H10A	0.6030	0.8118	0.4281	0.075*
C11	0.4238 (2)	0.7973 (2)	0.57054 (17)	0.0607 (3)
H11A	0.4695	0.8258	0.6437	0.073*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic	displ	lacement	parameters	$(Å^2)$	
--------	-------	----------	------------	---------	--

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0475 (5)	0.0452 (5)	0.0381 (5)	-0.0274 (4)	0.0095 (4)	-0.0170 (4)
C1	0.0472 (5)	0.0465 (6)	0.0436 (5)	-0.0269 (5)	0.0140 (4)	-0.0193 (5)
N2	0.0526 (5)	0.0507 (5)	0.0412 (5)	-0.0321 (4)	0.0111 (4)	-0.0208 (4)
C2	0.0489 (6)	0.0489 (6)	0.0400 (5)	-0.0261 (5)	0.0066 (4)	-0.0145 (5)

supplementary materials

N3	0.0675 (6)	0.0596 (6)	0.0377 (5)	-0.0414 (5)	0.0050 (4)	-0.0141 (5)
C3	0.0431 (5)	0.0514 (6)	0.0385 (5)	-0.0276 (5)	0.0118 (4)	-0.0202 (5)
N4	0.0662 (6)	0.0564 (6)	0.0467 (5)	-0.0383 (5)	0.0119 (5)	-0.0227 (5)
C4	0.0681 (8)	0.0502 (7)	0.0617 (8)	-0.0341 (6)	0.0133 (6)	-0.0233 (6)
C5	0.0630 (7)	0.0629 (7)	0.0522 (7)	-0.0390 (6)	0.0108 (5)	-0.0282 (6)
C6	0.0477 (6)	0.0457 (6)	0.0485 (6)	-0.0235 (5)	0.0066 (5)	-0.0141 (5)
C7	0.0559 (6)	0.0361 (5)	0.0367 (5)	-0.0243 (5)	0.0041 (4)	-0.0089 (4)
C8	0.0685 (7)	0.0492 (6)	0.0384 (6)	-0.0302 (6)	0.0076 (5)	-0.0146 (5)
C9	0.0670 (8)	0.0547 (7)	0.0481 (7)	-0.0290 (6)	0.0171 (6)	-0.0138 (6)
C10	0.0623 (8)	0.0638 (8)	0.0636 (8)	-0.0387 (7)	0.0131 (6)	-0.0159 (7)
C11	0.0717 (8)	0.0675 (8)	0.0585 (8)	-0.0459 (7)	0.0094 (6)	-0.0252 (7)

Geometric parameters (Å, °)

N1—C3	1.3557 (14)	C4—H4B	0.9600
N1—N2	1.3626 (13)	C4—H4C	0.9600
N1—C6	1.4627 (15)	C5—H5A	0.9600
C1—N2	1.3287 (15)	С5—Н5В	0.9600
C1—C2	1.3998 (16)	С5—Н5С	0.9600
C1—C4	1.4948 (17)	C6—H6A	0.9700
C2—C3	1.3747 (16)	С6—Н6В	0.9700
C2—H2A	0.9300	C7—C8	1.4057 (17)
N3—C7	1.3689 (16)	C8—C9	1.364 (2)
N3—C6	1.4263 (16)	C8—H8A	0.9300
N3—H3A	0.885 (17)	C9—C10	1.386 (2)
C3—C5	1.4876 (16)	С9—Н9А	0.9300
N4—C7	1.3325 (15)	C10—C11	1.365 (2)
N4—C11	1.3435 (17)	C10—H10A	0.9300
C4—H4A	0.9600	C11—H11A	0.9300
C3—N1—N2	111.98 (9)	H5A—C5—H5B	109.5
C3—N1—C6	129.84 (10)	C3—C5—H5C	109.5
N2—N1—C6	118.18 (9)	H5A—C5—H5C	109.5
N2—C1—C2	110.81 (10)	H5B—C5—H5C	109.5
N2—C1—C4	120.70 (11)	N3—C6—N1	113.48 (10)
C2-C1-C4	128.49 (11)	N3—C6—H6A	108.9
C1—N2—N1	105.12 (9)	N1—C6—H6A	108.9
C3—C2—C1	106.05 (10)	N3—C6—H6B	108.9
С3—С2—Н2А	127.0	N1—C6—H6B	108.9
C1—C2—H2A	127.0	Н6А—С6—Н6В	107.7
C7—N3—C6	123.05 (10)	N4—C7—N3	118.30 (10)
C7—N3—H3A	117.4 (10)	N4—C7—C8	122.12 (11)
C6—N3—H3A	118.4 (10)	N3—C7—C8	119.58 (10)
N1—C3—C2	106.05 (10)	C9—C8—C7	118.93 (12)
N1—C3—C5	123.20 (11)	С9—С8—Н8А	120.5
C2—C3—C5	130.74 (11)	С7—С8—Н8А	120.5
C7—N4—C11	117.04 (11)	C8—C9—C10	119.59 (12)
C1—C4—H4A	109.5	С8—С9—Н9А	120.2
C1—C4—H4B	109.5	С10—С9—Н9А	120.2
H4A—C4—H4B	109.5	C11—C10—C9	117.53 (13)

C1—C4—H4C	109.5	С11—С10—Н10А	121.2
H4A—C4—H4C	109.5	C9-C10-H10A	121.2
H4B—C4—H4C	109.5	N4-C11-C10	124.77 (13)
С3—С5—Н5А	109.5	N4—C11—H11A	117.6
C3—C5—H5B	109.5	C10-C11-H11A	117.6
C2-C1-N2-N1	0.36 (12)	C3—N1—C6—N3	115.73 (13)
C4—C1—N2—N1	179.74 (10)	N2—N1—C6—N3	-64.89 (13)
C3—N1—N2—C1	-0.19 (12)	C11—N4—C7—N3	-178.41 (11)
C6—N1—N2—C1	-179.67 (9)	C11—N4—C7—C8	1.09 (18)
N2—C1—C2—C3	-0.40 (12)	C6—N3—C7—N4	-9.23 (17)
C4—C1—C2—C3	-179.72 (11)	C6—N3—C7—C8	171.26 (11)
N2—N1—C3—C2	-0.06 (12)	N4—C7—C8—C9	-0.08 (19)
C6—N1—C3—C2	179.35 (10)	N3—C7—C8—C9	179.42 (11)
N2—N1—C3—C5	179.43 (9)	C7—C8—C9—C10	-0.9 (2)
C6—N1—C3—C5	-1.17 (17)	C8—C9—C10—C11	0.9 (2)
C1—C2—C3—N1	0.27 (12)	C7—N4—C11—C10	-1.2 (2)
C1—C2—C3—C5	-179.16 (11)	C9—C10—C11—N4	0.2 (2)
C7—N3—C6—N1	-84.59 (14)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N3—H3A···N2 ⁱ	0.886 (17)	2.177 (17)	3.0524 (17)	169.8 (15)
Symmetry codes: (i) $-x$, $-y+1$, $-z+1$.				

Fig. 2